If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2+5k-10=0
a = 3; b = 5; c = -10;
Δ = b2-4ac
Δ = 52-4·3·(-10)
Δ = 145
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{145}}{2*3}=\frac{-5-\sqrt{145}}{6} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{145}}{2*3}=\frac{-5+\sqrt{145}}{6} $
| 19z-4+12z=16z-1+1413z | | 0.3+(x/10)=0.5x-0.4 | | -27=27-6u | | 4-7k+4=1-6k | | 3k^2-5k-10=1 | | 3(r+2.2)-5.9=6.1 | | 3k^2-5k-10=0 | | r-17.3=-3.4 | | 0=-2.5x+20 | | 14.95=9-j | | 8x-7=-7x-2 | | s/4+10=7 | | 1-(x-3)=1-3(-x+2) | | 7(f+1)=91 | | x/4+1/4=3/8 | | p-12/3=-5 | | -2(d-9.7)=1.4 | | 4/5h=6 | | -3x-(5)=16 | | 8.5=3-t | | -49=6b-13 | | e+45/6=9 | | 1/2x=3x-3/4 | | v-15=-20 | | h-27/6=10 | | 8-6y=10 | | 5y+15=39 | | -9(u+5)=-54 | | h-27=27/6 | | -2.39(u-10)+-1.4=1.4 | | -3(-x+5)=2x-10 | | b=22+6 |